Rule model simplification
نویسنده
چکیده
Due to its high performance and comprehensibility, fuzzy modelling is becoming more and more popular in dealing with nonlinear, uncertain and complex systems for tasks such as signal processing, medical diagnosis and financial investment. However, there are no principal routine methods to obtain the optimum fuzzy rule base which is not only compact but also retains high prediction (or classification) performance. In order to achieve this, two major problems need to be addressed. First, as the number of input variables increases, the number of possible rules grows exponentially (termed curse of dimensionality). It inevitably deteriorates the transparency of the rule model and can lead to over-fitting, with the model obtaining high performance on the training data but failing to predict the unknown data successfully. Second, gaps may occur in the rule base if the problem is too compact (termed sparse rule base). As a result, it cannot be handled by conventional fuzzy inference such as Mamdani. This Ph.D. work proposes a rule base simplification method and a family of fuzzy interpolation methods to solve the aforementioned two problems. The proposed simplification method reduces the rule base complexity via Retrieving Data from Rules (RDFR). It first retrieves a collection of new data from an original rule base. Then the new data is used for re-training to build a more compact rule model. This method has four advantages: 1) It can simplify rule bases without using the original training data, but is capable of dealing with combinations of rules and data. 2) It can integrate with any rule induction or reduction schemes. 3) It implements the similarity merging and inconsistency removal approaches. 4) It can make use of rule weights. Illustrative examples have been given to demonstrate the potential of this work. The second part of the work concerns the development of a family of transformation based fuzzy interpolation methods (termed HS methods). These methods first introduce the general concept of representative values (RVs), and then use this to interpolate fuzzy rules involving arbitrary polygonal fuzzy sets, by means of scale and move transformations. This family consists of two sub-categories: namely, the original HS methods and the enhanced HS methods. The HS methods not only inherit the common advantages of fuzzy interpolative reasoning – helping reduce rule base complexity and allowing inferences to be performed within simple and sparse rule bases –
منابع مشابه
Simple PPDB: A Paraphrase Database for Simplification
We release the Simple Paraphrase Database, a subset of of the Paraphrase Database (PPDB) adapted for the task of text simplification. We train a supervised model to associate simplification scores with each phrase pair, producing rankings competitive with state-of-theart lexical simplification models. Our new simplification database contains 4.4 million paraphrase rules, making it the largest a...
متن کاملFrequency Domain Model Simplification of Cumulative Mass Fraction in CMSMPR Crystallizer
In this contribution, linearized dynamic model of Cumulative Mass Fraction (CMF) of Potassium Nitrate-Water Seeded Continues Mixed Suspension Mixed Product Removal (CMSMPR) crystallizer is approximated by a simplified model in frequency domain. Frequency domain model simplification is performed heuristically using the frequency response of the derived linearized models data. However, the CM...
متن کاملSimplification of Parameters in a Complex Catchment Model: a Daily Rainfal Data Generation Process
This paper describes the rainfall data generation processes, which were used to simplify the recharge model developed by Khazai and Spink. The principles of techniques used for single and two sites generation are discussed. The application of the techniques for extending the rainfall records at the existing stations and increasing arbitrarily the numbers of rain gauges within the catchment are ...
متن کاملHeuristic Process Model Simplification in Frequency Response Domain
Frequency response diagrams of a system include detailed and recognizable information about the structural and parameter effects of the transfer function model of the system. The information are qualitatively and quantitatively obtainable from simultaneous consideration of amplitude ratio and phase information. In this paper, some rules and relationships are presented for making use of frequenc...
متن کاملFault Detection of Bearings Using a Rule-based Classifier Ensemble and Genetic Algorithm
This paper proposes a reduct construction method based on discernibility matrix simplification. The method works with genetic algorithm. To identify potential problems and prevent complete failure of bearings, a new method based on rule-based classifier ensemble is presented. Genetic algorithm is used for feature reduction. The generated rules of the reducts are used to build the candidate base...
متن کامل